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We address under what conditions dynamical coupling between chaotic systems can be detected reliably
from scalar time series. In particular, we study weakly coupled chaotic systems and focus on the detectability
of the correlation dimension of the chaotic invariant set by utilizing the Grassberger-Procaccia algorithm. An
algebraic scaling law is obtained, which relates the necessary length of the time series to a key parameter of the
system: the coupling strength. The scaling law indicates that an extraordinarily long time series is required for
detecting the coupling dynamics.
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The practically important area of chaotic time serieshigh-dimensional chaotic attractor with multiple positive
analysis starts after the seminal work of Takghls In many  Lyapunov exponents. Our question concerns the detectability
applications, the details of a nonlinear dynamical system aréf the high-dimensional nature of the attractor.
unknown and the only available information about the sys- Our approach will be to focus on the GP algorithm for
tem is one or a few measured scalar time series. Assume tfgStimating the correlation dimension. To formulate the prob-
typical situation where the asymptotic invariant set of the'©™ lc:%nvenlentl_%h we cl_onS|der a tsé|mplde system tﬁf ttWO
system, such as a chaotic attractor, lies iD-dimensional coupied maps with coupling parameteiand suppose that a

i . . ) time series of lengthN is measured from one mafor
manifold M. Given a measured scalar time seni), an  ontinyous-time systems, this means that roughly, the time

mrdimensional vector space of the following form(t)  series containdl oscillations. Let d, be the correlation di-
={u(®),u(t+17), ... ut+(m-1)7)}, can then be con- mension computed from the time series by utilizing the GP
structed to represent the original dynamical system, where algorithm, and leD, be the true correlation dimension of the
is thedelay timeandm is theembedding dimensioffakens  chaotic attractor. In general, both andD, depend orK, so
proved that for properly chosen if the embedding dimen- we writed,(K) andD,(K). To gain insight, we consider the
sion is at least more than twice the dimension of the manifwo extreme situations.

fold, i.e., m=2D+1, then there exists a one-to-one corre- (1) If Kis large enough, there is a synchroniza(i6v| or

spondence between the reconstructed and the original phaggneralized synchronizatig] between the dynamics of the
ftwo maps. Because of synchronization, a reasonably long

spaces. As a practical matter, in many situations the dimenﬁme seriesto be made precise beloyeven if it is measured

sion of the asymptotic invariant setis of great interest, from one map, can yield the correct dimensionality of the
which can be much smaller thad. The work by Sauer, airactor.

YOI’ke, and Casdag']2] relaxes the requirement for the em- (2) If K:O’ then time series from one map’ no matter
bedding dimension ton=2d+1, whered is the box-  how long, will not reflect the dynamics of the whole system.
counting dimension of the asymptotic invariant set. Mile-For a given value oK (smal), there then exists a minimum
stone works in this area include that by Grassberger antengthN,,;, of the time series, where, is expected to be a
Procaccia(GP) [3] who proposed a simple but efficient al- good approximation oD, only for N>N,,;,. Apparently,
gorithm for estimating the correlation dimension of the un-N,,;,—® asK—0. Equivalently, for a given lengtN, there
derlying invariant set, and those by Welf al. and Eckmann exists a minimally detectable value of the coupling param-
et al. [4] on the computation of the Lyapunov exponentseter K.,;,. The question of practical importance is hdw
from time series. Chaotic time series analysis has since be&cales withK,;,. The principal result of this paper is the
come one of the most active areas in nonlinear dynafics following algebraic scaling law betwee¥ and K

In this paper we address the following question: given a N~K=A )
scalar time series measured from a chaotic system that con- min>
sists of coupled subsystems, is the dynamical cougdia@-  where the scaling exponent is given By= D,/2. To appre-
tically detectable? This question is relevant to a variety ofciate the significance of the scaling, say we measure a
physical situations. One natural example is coupled chaotigoupled chaotic system with,=100 and supposk=0.1.
oscillators. If a scalar time series is measured from one osFhen the required minimum length of the time series that can
cillator, can one detect the presence of other oscillatorgieid the correct dimensionality of the attractor is on the
through the time series only? Another example is the experierder of 13° which is practically impossible to deal with.
mental analyses of fluid turbulence where one typically emThe implication is that, in a practical sense, coupled chaotic
beds one or a few sensors in the fluid to measure the velocitynamics is undetectable from only a limited number of
field. Suppose the underlying dynamical invariant set is aneasurement].
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FIG. 1. For the modified Kaplan-Yorke map, E@), with « . ) ) .
=1/4, the estimated correlation dimension versus the coupling pa- 'EG 2. L'”?«% scaling beh?\llcl)or of the correlation sum For
. . . . 510 =2% (@) K=2"“"and(b) K=2""". In (a) the interaction between
rameter K obtained using time series of length=2"" (open L
. . . . . thex andy dynamics is too weak to be detected(ln there are two
circles. Also shown is the correlation dimensidd, computed I : : . L
. i distinct linear scaling regions, the slope of the region in the small
from a box-counting procedur@olid curve. . . : . . .
distance scale is approximately the correct dimension of the chaotic

To illustrate our result, we study an example for which attractor.
both the true value of the correlation dimension and its esti-, ] .
mated value from time series can be computed. In particulafX the delay time to ber=1 and choose the embedding
we consider a coupled version of the two-dimensionafdimension to bem=5, which is at least two times larger

Kaplan-Yorke magf10], than the actual value @, (the solid line in Fig. 1 Empiri-
cally, these choices of the and m warrant that a sizable

Xpn+1=(3X,+Ky,) mod(1), linear scaling regime in I&(N,e) vs Ine exists [12], the

slope of which givesl,. Figure 1 also shows the value @f
Vni1= ayn+2 cog27X,), (2 (open circles with N=21° For K=0, the measured time

. . ] series is solely from the one-dimensional, piecewise linear
where 0<a<1 is a parameter arid is the coupling param-  chaotic map irx for which the correlation dimension is unity.
eter. ForK=0, which corresponds to the original Kaplan- Thys the GP algorithm gives,~ 1, regardless of the length
Yorke map with a skew-product structure, the two Lyapunovpf the time series. AK is increased, thg dynamics begins
exponents arg;=In3>0 and\ ,=In <0, so there isa cha- g have an effect on the dynamics, so the value d,
otic attractor. We fixa=1/4. The Lyapunov dimensiofor approaches that d,. For N=2° we observe that foK
equivalently the information dimension by the Kaplan—Yorke>KN%1071.8’ the values ofl, andD, are the same within
conjecturef10]) is D =1+1In3/In4~1.8. AsK is increased umerical errors.
from zero, the “communication” between theandy dy- How do the coupling parameter and hence the true dimen-
namics is also increased. Thus, intuitively, we exgectto  sjonality of the chaotic attractor in the full phase space,
decrease foK=0. The correlation dimensioD, cannot be  manifest themselves in the plot of the correlation sum in Eq.
larger than the information dimension, so we expBgt  (3)? To gain an intuition, we note that, because of the proba-
<D, . To compute the “true” value oD,, we make use of pjistic nature of the correlation sum, the longer the time se-
the definition of dimension spectrub, [11] and perform a ries, the smaller the phase-space distance scale that the sum
straightforward box-counting computation. The result iscan resolve. For a fixed length, let €min be the minimum
shown as the solid line in Fig. 1, which[s, vs the coupling  distance scale that can be revealecCifN, €). In general, a
parameter. To obtaid,, the estimate oD, from data, we variation in the phase-space distance is proportional to a
increaseK Systematica”y from zero and, for each valuekof variation in the system parameter. ThUS, rough|y, Kif
we collect a scalar time seri¢s;}, reconstruct a sequence of <¢_. . the linear scaling region in the logarithmic plot of
N delay-coordinate embedding vectdss}i_; , and compute C(N,e) cannot extend down to the distance scale that re-
the following correlation sum in the GP algorithii8]: flects the influence of the coupling. It is necessary for the
coupling parameter to be large enough, K&y €,,i,, for the
full dimension of the chaotic attractor to be detected. The
reasoning is supported by FiggaRand 2b), where logC is
plotted vs loge for N=22 andK=2"20 (a) andK=2"10
where © is the Heaviside functiofi®(x)=1 if x=0 and (b), respectively. For the small value Kfin Fig. 2(a), there
®(x)=0 otherwisé, and |-|| denotes a suitable vector appears to be a single linear scaling region with the slope of
norm, say||x||=max][x;|: 1<i<d}. Asymptotically, the cor- approximately one, indicating that tlyedynamics cannot be
relation dimension d, is given by Ref. [3]: d, detected using time series of this length. For the relatively

=lim__ lim  _InC(N,e)/Ine. In the actual computation, we large value ofK in Fig. 2(b), there are two linear scaling

5 N N
C(N'E)=mj21 i:jEH O(e—[xi—xlh), (3
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FIG. 3. Four most probable values of local slopes from the FIG. 4. Numerically obtained algebraic scaling relation between
correlation sum fo(a) N=2¢ and (b) N=2%2 N andKpip -

regions, one in large distance scales which has the slope ef8,<1. The horizontal intervals specified in FiggaBand
about one and another in relatively small distance scale3(b) indicate the corresponding ranges of the detectable val-
which yields the correct dimensionality of the chaotic attrac-ues of the coupling parameter, fé5=0.1 andés,= 1.0 (ar-
tor in the full phase space. Neag=2"°, there is a cross- bitrary). The choices of these constants will affédk, but
over from one linear scaling region to another. The crossovethey will have a negligible effect on the scaling relation be-
behavior is thus the key to assessing the correct dimensioween N,,;, and K, which is shown in Fig. 4. Despite the
ality of the attractor. In general, the value €f decreases as appreciable amount of uncertaintiesd,;,, for each fixed\,
K is reduced and, hence,Nf is finite, there exists a value of the algebraic scaling behavior appears to be reasonable. The
K below which the crossover behavior cannot be observedalgebraic scaling exponent 8=0.7+0.2. In the scaling

It is in fact, highly nontrivial to obtain the scaling relation range of the coupling parameter, the correlation dimension of
betweenN andK,;,, as it requires varying botd andN in  the attractor remains approximately constddy=1.7. Thus
a systematic way and analyzing the scaling behavior of theve see that the agreement betwgeand our predicted value
correlation sum for each combination NfandK. We have D,/2 is reasonable to within numerical uncertainty.
developed the following procedure. Since in the computation Theoretically, it is straightforward to argue for the validity
of C(N,e), it is convenient to fix the length of the time of the scaling relation(1). For fixed delay timer and em-
series, we choose to determine the valueKgf,. For a  bedding dimensiom, the correlation sum can be written as
given value ofN, we vary K systematically in the range [13]: log,C(N,e)=D,log,e—mm,log,e, where H, is the
[2720,273]. For each value oK, we compute the correlation order-two entropy. Equivalently, if is the number of distinct
sumC(N,e€), as in Figs. 2a) and 2b). Local slopes are then pairs of points on the attractor within distanedn the re-
computed by utilizing, say a moving window of ten data constructed phase space, then in the linear scaling region of
points from the entire curve of IgG(N,e) vs loge and, their  log,C(N,e) vs loge, we have:J=(N?%/2)eP2e ™™z, For
histogram is constructed. Such a histogram typically containfixed N, in order forK ,;, to be detectable, at the correspond-
a number of distinct peaks. FiguregaBand 3b) show, for  ing distance scale~K,,,, it is necessary to havé>1 to
N=2%andN= 2% respectively, the first four most probable warrant a sizable scaling region for estimating the true di-
values of the local slopes vs the coupling paramktevhere  mensionality of chaotic attractor in the full phase space. We
the circles, squares, crosses, and diamonds denote the slopggs haveN2K °2 ~ const, which gives the scaling laf).
of highest, second highest, third highest, and fourth highest \ye have also studied the following system of two coupled
probabilities, respectively, and the solid lines denote the corRyssier chaotic oscillatorgL4]:
rect values of the correlation dimension. There is a high
probability for the local slopes to be one, which is the wrong
dimension of the attractor fd£ # 0. For largeN, the correct dxy 2
dimension starts to appear for smaller valueskofas ex- Tt Yz At A(X21=X12), ()
pected. LettingP(D,~1.7) andP(D,~1.0) be the prob-
abilities of observing the local slopes corresponding to the
correct and incorrect dimensions, respectively, we use the dy;»
following simple empirical criterion to estimate the mini- dt
mally detectable value ok and its uncertaintyK ,in= (K4
+K,)/2 and AK=(K,—K;), where K;=K[P(D,~1.7) g
=6,P(D,~1.0)] and K,=K[P(D,~1.7)=6,P(D, 4z;2 B
~1.0)], and 8, and &, are two constants satisfying<05; ar 02t zdx,,- 100,

= Xl,2+ 0.165/1’2,
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0 N2 ‘ v shown in Fig. Bb) for 6=2"°. The estimated slope in the
10 5=2710 | large (relative) e region is still 2.3, while the slope in the
%u slope = 2.3 small e region is about 3.9, the correct value of the correla-

° _pp] tion dimension of the coupled system E4). This behavior
is completely similar to that observed for the two-
—300 & : ) = A dimensional magEq. (2)]. Because of the computational
. . log,e . . requirement, it is difficult to verify the scaling relatidh) for
0 (b)N=2' o the six-dimensional system E¢). (Note that it is already
0] 3=2° \ I nontrivial to obtain the scaling for the two-dimensional
S slope =23 Kaplan-Yorke map.
= -20; \ I In summary, we have obtained a scaling law for the
30 _slope ~ 3.0 . ' required length of thg time _sgries Fn order to. detect the
-10 -8 -6 log,e -4 -2 0 influence of coupling in multidimensional chaotic systems.

Our result suggests that, detecting the dynamical coupling

FIG. 5. For the system of coupled Bsler chaotic oscillators, from measured time series in such chaotic systems can
scaling behavior of the correlation sum 926 (a) 5=2"%and  be prohibitively difficult with limited data and computational
(b) 6=275. For(a) the coupling is too weak to be detected, as thepower. We speculate that the popular delay-coordinate
slope of the correlation sum is approximately the correlation dimenembedding technique, suitable for scalar time series, may
sion of a single Rssler attractor. Fofb) there is a crossover be- not be effective for detecting coupled chaotic dynamics
tween two apparently linear scaling regions, indicating that couthat arise in many natural situations. Perhaps, it is necessary
pling of this magnitude can be detected for the fixed number of datdo employ the method of spatiotemporal embedding
points (29). [15] that typically requires many simultaneous measure-
ments.

We remark that the requirement of a prohibitively long
time series for dimension estimation in high-dimensional dy-

~10 o2 : ; :
[27°%.277]. The Lyapunov dimension of the chaotic attractor 5 mica| systems and thus the practical infeasibility of dimen-
of the coupled system, estimated using the Kaplan-Yorkgjon computation in such situations have been well known.

conjecturg 10}, is about 4.0, which is the upper bound of the |, 3 ticylar, Eckmann and Ruel[@6] give the general es-
correlation dimension. To obtain a scalar time series, We iNgmate that the number of data points required for a correct
tegrate Eq(4) using time stef=0.01 and record(t) for  egtimation of dimension of valub is on the order of mag-
t=n(50)(n=1, ...,29. Since the average oscillating pe- nirde of 1. The focus of this paper is on the detectability
riod of the Rasler system is about 5, there are roughly €Nyt o pling, through dimension computation, for dynamical
sampling points in each period. The delay time is chosen Qytems consisting of weakly interacting subsystems. Our
be 7=30Ch, which is about half of the oscillating period. FOr gcajing resuli1), which is valid only for weak coupling, is
small coupling, for finite time series there is N0 Crossovehperefore a consequence of the general Eckmann-Ruelle re-
behavior in the plot of log-(e) vs loge, as shown in Fig. gyt |ndeed, our conclusion that weak coupling is practically

—o-10 i - i
5(a) for 6=2""". There is apparently only one linear scaling ot detectable is consistent with the result by Eckmann and
region and the estimated slope from this region is about 2.33 e|le[16].

approximately the correlation dimension of the single
Raossler chaotic attractor. As the coupling is increased, two This work is supported by AFOSR under Grant No.
linear scaling regions appear with a clear crossover point, ag49620-01-1-0317.

where the coupling paramete is chosen from the range
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