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Detectability of dynamical coupling from delay-coordinate embedding of
scalar time series
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We address under what conditions dynamical coupling between chaotic systems can be detected reliably
from scalar time series. In particular, we study weakly coupled chaotic systems and focus on the detectability
of the correlation dimension of the chaotic invariant set by utilizing the Grassberger-Procaccia algorithm. An
algebraic scaling law is obtained, which relates the necessary length of the time series to a key parameter of the
system: the coupling strength. The scaling law indicates that an extraordinarily long time series is required for
detecting the coupling dynamics.
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The practically important area of chaotic time ser
analysis starts after the seminal work of Takens@1#. In many
applications, the details of a nonlinear dynamical system
unknown and the only available information about the s
tem is one or a few measured scalar time series. Assume
typical situation where the asymptotic invariant set of t
system, such as a chaotic attractor, lies in aD-dimensional
manifold M. Given a measured scalar time seriesu(t), an
m-dimensional vector space of the following form:x(t)
5$u(t),u(t1t), . . . ,u„t1(m21)t…%, can then be con-
structed to represent the original dynamical system, whet
is thedelay timeandm is theembedding dimension. Takens
proved that for properly chosent, if the embedding dimen-
sion is at least more than twice the dimension of the ma
fold, i.e., m>2D11, then there exists a one-to-one corr
spondence between the reconstructed and the original p
spaces. As a practical matter, in many situations the dim
sion of the asymptotic invariant setd is of great interest,
which can be much smaller thanD. The work by Sauer,
Yorke, and Casdagli@2# relaxes the requirement for the em
bedding dimension tom>2d11, where d is the box-
counting dimension of the asymptotic invariant set. Mi
stone works in this area include that by Grassberger
Procaccia~GP! @3# who proposed a simple but efficient a
gorithm for estimating the correlation dimension of the u
derlying invariant set, and those by Wolfet al. and Eckmann
et al. @4# on the computation of the Lyapunov exponen
from time series. Chaotic time series analysis has since
come one of the most active areas in nonlinear dynamics@5#.

In this paper we address the following question: given
scalar time series measured from a chaotic system that
sists of coupled subsystems, is the dynamical couplingprac-
tically detectable? This question is relevant to a variety
physical situations. One natural example is coupled cha
oscillators. If a scalar time series is measured from one
cillator, can one detect the presence of other oscilla
through the time series only? Another example is the exp
mental analyses of fluid turbulence where one typically e
beds one or a few sensors in the fluid to measure the velo
field. Suppose the underlying dynamical invariant set i
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high-dimensional chaotic attractor with multiple positiv
Lyapunov exponents. Our question concerns the detectab
of the high-dimensional nature of the attractor.

Our approach will be to focus on the GP algorithm f
estimating the correlation dimension. To formulate the pro
lem conveniently, we consider a simple system of tw
coupled maps with coupling parameterK and suppose that a
time series of lengthN is measured from one map~for
continuous-time systems, this means that roughly, the t
series containsN oscillations!. Let d2 be the correlation di-
mension computed from the time series by utilizing the G
algorithm, and letD2 be the true correlation dimension of th
chaotic attractor. In general, bothd2 andD2 depend onK, so
we writed2(K) andD2(K). To gain insight, we consider th
two extreme situations.

~1! If K is large enough, there is a synchronization@6,7# or
generalized synchronization@8# between the dynamics of th
two maps. Because of synchronization, a reasonably l
time series~to be made precise below!, even if it is measured
from one map, can yield the correct dimensionality of t
attractor.

~2! If K50, then time series from one map, no mat
how long, will not reflect the dynamics of the whole syste
For a given value ofK ~small!, there then exists a minimum
lengthNmin of the time series, whered2 is expected to be a
good approximation ofD2 only for N.Nmin . Apparently,
Nmin→` asK→0. Equivalently, for a given lengthN, there
exists a minimally detectable value of the coupling para
eter Kmin . The question of practical importance is howN
scales withKmin . The principal result of this paper is th
following algebraic scaling law betweenN andKmin :

N;Kmin
2b , ~1!

where the scaling exponent is given byb5D2/2. To appre-
ciate the significance of the scaling, say we measur
coupled chaotic system withD25100 and supposeK50.1.
Then the required minimum length of the time series that
yieid the correct dimensionality of the attractor is on t
order of 1050, which is practically impossible to deal with
The implication is that, in a practical sense, coupled cha
dynamics is undetectable from only a limited number
measurements@9#.
©2002 The American Physical Society17-1
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To illustrate our result, we study an example for whi
both the true value of the correlation dimension and its e
mated value from time series can be computed. In particu
we consider a coupled version of the two-dimensio
Kaplan-Yorke map@10#,

xn115~3xn1Kyn! mod~1!,

yn115ayn12 cos~2pxn!, ~2!

where 0,a,1 is a parameter andK is the coupling param-
eter. ForK50, which corresponds to the original Kapla
Yorke map with a skew-product structure, the two Lyapun
exponents arel15 ln 3.0 andl25 ln a,0, so there is a cha
otic attractor. We fixa51/4. The Lyapunov dimension~or
equivalently the information dimension by the Kaplan-Yor
conjecture@10#! is DL511 ln 3/ln 4'1.8. AsK is increased
from zero, the ‘‘communication’’ between thex and y dy-
namics is also increased. Thus, intuitively, we expectDL to
decrease forK*0. The correlation dimensionD2 cannot be
larger than the information dimension, so we expectD2
<DL . To compute the ‘‘true’’ value ofD2, we make use of
the definition of dimension spectrumDq @11# and perform a
straightforward box-counting computation. The result
shown as the solid line in Fig. 1, which isD2 vs the coupling
parameter. To obtaind2, the estimate ofD2 from data, we
increaseK systematically from zero and, for each value ofK,
we collect a scalar time series$xi%, reconstruct a sequence o
N delay-coordinate embedding vectors$xi% i 51

N , and compute
the following correlation sum in the GP algorithm@3#:

C~N,e!5
2

N~N21! (
j 51

N

(
i 5 j 11

N

Q~e2ixi2xj i !, ~3!

where Q is the Heaviside function@Q(x)51 if x>0 and
Q(x)50 otherwise#, and i•i denotes a suitable vecto
norm, sayixi5max$ixi i :1< i<d%. Asymptotically, the cor-
relation dimension d2 is given by Ref. @3#: d2
5 lim

e→0
lim

N→`
ln C(N,e)/ln e. In the actual computation, w

FIG. 1. For the modified Kaplan-Yorke map, Eq.~2!, with a
51/4, the estimated correlation dimension versus the coupling

rameter K obtained using time series of lengthN5210 ~open
circles!. Also shown is the correlation dimensionD2 computed
from a box-counting procedure~solid curve!.
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i-
r,
l

v

fix the delay time to bet51 and choose the embeddin
dimension to bem55, which is at least two times large
than the actual value ofD2 ~the solid line in Fig. 1!. Empiri-
cally, these choices of thet and m warrant that a sizable
linear scaling regime in lnC(N,e) vs lne exists @12#, the
slope of which givesd2. Figure 1 also shows the value ofd2
~open circles! with N5210. For K50, the measured time
series is solely from the one-dimensional, piecewise lin
chaotic map inx for which the correlation dimension is unity
Thus, the GP algorithm givesd2'1, regardless of the length
of the time series. AsK is increased, they dynamics begins
to have an effect on thex dynamics, so the value ofd2
approaches that ofD2. For N5210, we observe that forK
.KN'1021.8, the values ofd2 andD2 are the same within
numerical errors.

How do the coupling parameter and hence the true dim
sionality of the chaotic attractor in the full phase spa
manifest themselves in the plot of the correlation sum in E
~3!? To gain an intuition, we note that, because of the pro
blistic nature of the correlation sum, the longer the time
ries, the smaller the phase-space distance scale that the
can resolve. For a fixed lengthN, let emin be the minimum
distance scale that can be revealed inC(N,e). In general, a
variation in the phase-space distance is proportional t
variation in the system parameter. Thus, roughly, ifK
,emin , the linear scaling region in the logarithmic plot o
C(N,e) cannot extend down to the distance scale that
flects the influence of the coupling. It is necessary for
coupling parameter to be large enough, sayK*emin , for the
full dimension of the chaotic attractor to be detected. T
reasoning is supported by Figs. 2~a! and 2~b!, where log2C is
plotted vs log2e for N5212 and K52220 ~a! and K52210

~b!, respectively. For the small value ofK in Fig. 2~a!, there
appears to be a single linear scaling region with the slope
approximately one, indicating that they dynamics cannot be
detected using time series of this length. For the relativ
large value ofK in Fig. 2~b!, there are two linear scaling

a- FIG. 2. Linear scaling behavior of the correlation sum forN
5212: ~a! K52220 and~b! K52210. In ~a! the interaction between
thex andy dynamics is too weak to be detected. In~b! there are two
distinct linear scaling regions, the slope of the region in the sm
distance scale is approximately the correct dimension of the cha
attractor.
7-2
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regions, one in large distance scales which has the slop
about one and another in relatively small distance sc
which yields the correct dimensionality of the chaotic attra
tor in the full phase space. Nearec&225, there is a cross-
over from one linear scaling region to another. The crosso
behavior is thus the key to assessing the correct dimens
ality of the attractor. In general, the value ofec decreases a
K is reduced and, hence, ifN is finite, there exists a value o
K below which the crossover behavior cannot be observ

It is in fact, highly nontrivial to obtain the scaling relatio
betweenN andKmin , as it requires varying bothK andN in
a systematic way and analyzing the scaling behavior of
correlation sum for each combination ofN andK. We have
developed the following procedure. Since in the computat
of C(N,e), it is convenient to fix the length of the tim
series, we choose to determine the value ofKmin . For a
given value ofN, we vary K systematically in the range
@2220,223#. For each value ofK, we compute the correlation
sumC(N,e), as in Figs. 2~a! and 2~b!. Local slopes are then
computed by utilizing, say a moving window of ten da
points from the entire curve of log2C(N,e) vs log2e and, their
histogram is constructed. Such a histogram typically conta
a number of distinct peaks. Figures 3~a! and 3~b! show, for
N5216 andN5212, respectively, the first four most probab
values of the local slopes vs the coupling parameterK, where
the circles, squares, crosses, and diamonds denote the s
of highest, second highest, third highest, and fourth high
probabilities, respectively, and the solid lines denote the c
rect values of the correlation dimension. There is a h
probability for the local slopes to be one, which is the wro
dimension of the attractor forKÞ0. For largeN, the correct
dimension starts to appear for smaller values ofK, as ex-
pected. LettingP(D2'1.7) andP(D2'1.0) be the prob-
abilities of observing the local slopes corresponding to
correct and incorrect dimensions, respectively, we use
following simple empirical criterion to estimate the min
mally detectable value ofK and its uncertainty:Kmin5(K1
1K2)/2 and DK5(K22K1), where K15K@P(D2'1.7)
5d1P(D2'1.0)# and K25K@P(D2'1.7)5d2P(D2
'1.0)#, and d1 and d2 are two constants satisfying 0,d1

FIG. 3. Four most probable values of local slopes from
correlation sum for~a! N5216 and ~b! N5212.
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,d2,1. The horizontal intervals specified in Figs. 3~a! and
3~b! indicate the corresponding ranges of the detectable
ues of the coupling parameter, ford150.1 andd251.0 ~ar-
bitrary!. The choices of these constants will affectDK, but
they will have a negligible effect on the scaling relation b
tween Nmin and K, which is shown in Fig. 4. Despite th
appreciable amount of uncertainties inKmin for each fixedN,
the algebraic scaling behavior appears to be reasonable.
algebraic scaling exponent isb50.760.2. In the scaling
range of the coupling parameter, the correlation dimensio
the attractor remains approximately constant:D2'1.7. Thus
we see that the agreement betweenb and our predicted value
D2/2 is reasonable to within numerical uncertainty.

Theoretically, it is straightforward to argue for the validi
of the scaling relation~1!. For fixed delay timet and em-
bedding dimensionm, the correlation sum can be written a
@13#: log2C(N,e)5D2log2e2mtH2log2e, where H2 is the
order-two entropy. Equivalently, ifJ is the number of distinct
pairs of points on the attractor within distancee in the re-
constructed phase space, then in the linear scaling regio
log2C(N,e) vs log2e, we have: J5(N2/2)eD2e2mtH2. For
fixed N, in order forKmin to be detectable, at the correspon
ing distance scalee;Kmin , it is necessary to haveJ@1 to
warrant a sizable scaling region for estimating the true
mensionality of chaotic attractor in the full phase space.
thus have:N2Kmin

D2 'const, which gives the scaling law~1!.
We have also studied the following system of two coup

Rössler chaotic oscillators@14#:

dx1,2

dt
5y1,22z1,21d~x2,12x1,2!, ~4!

dy1,2

dt
5x1,210.165y1,2,

dz1,2

dt
50.21z1,2~x1,2210.0!,

e FIG. 4. Numerically obtained algebraic scaling relation betwe
N andKmin .
7-3
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where the coupling parameterd is chosen from the rang
@2210,222#. The Lyapunov dimension of the chaotic attract
of the coupled system, estimated using the Kaplan-Yo
conjecture@10#, is about 4.0, which is the upper bound of th
correlation dimension. To obtain a scalar time series, we
tegrate Eq.~4! using time steph50.01 and recordx1(t) for
t5n(50h)(n51, . . . ,216). Since the average oscillating pe
riod of the Rössler system is about 5, there are roughly
sampling points in each period. The delay time is chosen
bet5300h, which is about half of the oscillating period. Fo
small coupling, for finite time series there is no crosso
behavior in the plot of log2C(e) vs log2e, as shown in Fig.
5~a! for d52210. There is apparently only one linear scalin
region and the estimated slope from this region is about
approximately the correlation dimension of the sing
Rössler chaotic attractor. As the coupling is increased,
linear scaling regions appear with a clear crossover poin

FIG. 5. For the system of coupled Ro¨ssler chaotic oscillators
scaling behavior of the correlation sum forN5216: ~a! d52210 and
~b! d5225. For ~a! the coupling is too weak to be detected, as t
slope of the correlation sum is approximately the correlation dim
sion of a single Ro¨ssler attractor. For~b! there is a crossover be
tween two apparently linear scaling regions, indicating that c
pling of this magnitude can be detected for the fixed number of d
points (216).
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shown in Fig. 5~b! for d5225. The estimated slope in th
large ~relative! e region is still 2.3, while the slope in the
small e region is about 3.9, the correct value of the corre
tion dimension of the coupled system Eq.~4!. This behavior
is completely similar to that observed for the tw
dimensional map@Eq. ~2!#. Because of the computationa
requirement, it is difficult to verify the scaling relation~1! for
the six-dimensional system Eq.~4!. ~Note that it is already
nontrivial to obtain the scaling for the two-dimension
Kaplan-Yorke map.!

In summary, we have obtained a scaling law for t
required length of the time series in order to detect
influence of coupling in multidimensional chaotic system
Our result suggests that, detecting the dynamical coup
from measured time series in such chaotic systems
be prohibitively difficult with limited data and computationa
power. We speculate that the popular delay-coordin
embedding technique, suitable for scalar time series, m
not be effective for detecting coupled chaotic dynam
that arise in many natural situations. Perhaps, it is neces
to employ the method of spatiotemporal embedd
@15# that typically requires many simultaneous measu
ments.

We remark that the requirement of a prohibitively lon
time series for dimension estimation in high-dimensional d
namical systems and thus the practical infeasibility of dim
sion computation in such situations have been well know
In particular, Eckmann and Ruelle@16# give the general es
timate that the number of data points required for a corr
estimation of dimension of valueD is on the order of mag-
nitude of 10D. The focus of this paper is on the detectabili
of coupling, through dimension computation, for dynamic
systems consisting of weakly interacting subsystems.
scaling result~1!, which is valid only for weak coupling, is
therefore a consequence of the general Eckmann-Ruelle
sult. Indeed, our conclusion that weak coupling is practica
not detectable is consistent with the result by Eckmann
Ruelle @16#.

This work is supported by AFOSR under Grant N
F49620-01-1-0317.
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